

		Skip to content

			
			

	
				

			
				
		
			
							

		

		
				

			
					
			
				Main Menu
											
		

			
			
		

				Home
	About
	BooksMenu Toggle
	Creating GUI Applications with wxPython
	Jupyter Notebook 101
	ReportLab: PDF Processing with Python
	Python 201: Intermediate Python
	wxPython Recipes
	wxPython Cookbook
	Python Interviews: Discussions with Python Experts

	Contact the Author
	Follow the Blog
	
						
		
	
		Search for:
		
			
	

			
				
					Search
									
			

		

					

			

		

			

		
			
		
		

	

		
					
				

	
	

	
	
		

			
			PyPDF2: The New Fork of pyPdf
			
				16 Comments			

			 / Python / By 			
				
				Mike			
			
		

		 / July 11, 2012 / PyPDF, Python PDF Series

			
		

	
	
	

		
		Today I learned that the pyPDF project is NOT dead, as I had originally thought. In fact, it’s been forked into PyPDF2 (note the slightly different spelling). There’s also a possibility that someone else has taken over the original pyPDF project and is actively working on it. You can follow all that over on reddit if you like. In the mean time, I decided to give PyPDF2 a whirl and see how it is different from the original. Feel free to follow along if you have a free moment or two.

Introducing PyPDF2

I originally wrote about pyPDF over two years ago and just recently I have been delving deep into the various Python PDF related libraries, so stumbling onto a new fork of pyPDF was pretty exciting. We’re going to take some of my old examples and run them in the new PyPDF2 and see if they work the same way.

Merge two PDFs
from PyPDF2 import PdfFileReader, PdfFileWriter

output = PdfFileWriter()
pdfOne = PdfFileReader(file("some\path\to\a\PDf", "rb"))
pdfTwo = PdfFileReader(file("some\other\path\to\a\PDf", "rb"))

output.addPage(pdfOne.getPage(0))
output.addPage(pdfTwo.getPage(0))

outputStream = file(r"output.pdf", "wb")
output.write(outputStream)
outputStream.close()

That worked perfectly on my Windows 7 box. As you might have guessed, all that code does is create to PdfFileReader objects and read in the first page of each. Next it adds those two pages to our PdfFileWriter. Finally we open a new file and write out our PDF pages. That’s it! You’ve just created a new document from two separate PDFs!

Now let’s try the page rotation script from my other article:

from PyPDF2 import PdfFileWriter, PdfFileReader

output = PdfFileWriter()
input1 = PdfFileReader(file("document1.pdf", "rb"))
output.addPage(input1.getPage(1).rotateClockwise(90))
output.addPage(input1.getPage(2).rotateCounterClockwise(90))

outputStream = file("output.pdf", "wb")
output.write(outputStream)
outputStream.close()

That also worked on my machine. So far so good. My final test of parity is to see if it can extract the same data that the original pyPdf could. We’ll try reading the metadata from the latest Reportlab user manual:

>>> from PyPDF2 import PdfFileReader

>>> p = r'C:\Users\mdriscoll\Documents\reportlab-userguide.pdf'

>>> pdf = PdfFileReader(open(p, 'rb'))

>>> pdf.documentInfo

{'/ModDate': u'D:20120629155504', '/CreationDate': u'D:20120629155504', '/Producer': u'GPL Ghostscript 8.15', '/Title': u'reportlab-userguide.pdf', '/Creator': u'Adobe Acrobat 10.1.3', '/Author': u'mdriscoll'}
>>> pdf.getNumPages()

120
>>> info = pdf.getDocumentInfo()

>>> info.author

u'mdriscoll'
>>> info.creator

u'Adobe Acrobat 10.1.3'
>>> info.producer

u'GPL Ghostscript 8.15'
>>> info.title

u'reportlab-userguide.pdf'

That all looks right too, except for the author bit. I’m certainly not the author of that document and I don’t know why it thinks I am. Otherwise, it appears to work correctly. Now let’s find out what’s new!

What’s New in PyPDF2

One of the first things I noticed when looking through the source for PyPDF2 is that it’s added a few new methods to PdfFileReader and PdfFileWriter. I also noticed that there’s an entirely new module called merger.py which contains the class: PdfFileMerger. Let’s take a look under the covers since there is no real documentation at the time of this writing. The only new method added to the reader is getOutlines, which retrieves the document outline, if it exists. In the writer, there is support for adding bookmarks and named destinations. Not much, but beggars can’t be choosers. I think the part I’m most excited about is the new PdfFileMerger class, which reminds me a bit of the dead Stapler project. The PdfFileMerger allows the programmer to merge multiple PDFs into a single PDF via concatenation, slicing, inserting or any combination of the three.

Let’s try that out with a few example scripts, shall we?

import PyPDF2

path = open('path/to/hello.pdf', 'rb')
path2 = open('path/to/another.pdf', 'rb')

merger = PyPDF2.PdfFileMerger()

merger.merge(position=0, fileobj=path2)
merger.merge(position=2, fileobj=path)
merger.write(open("test_out.pdf", 'wb'))

What this does is merge two files together. The first one will get the second file inserted starting on page 3 (note the off-by-one) and continue on after the insertion. This is a lot easier than iterating over the pages of both documents and putting them together. The merge command has the following signature and docstring, which sums it up pretty well:

>>> merge(position, file, bookmark=None, pages=None, import_bookmarks=True)

 Merges the pages from the source document specified by "file" into the output
 file at the page number specified by "position".

 Optionally, you may specify a bookmark to be applied at the beginning of the
 included file by supplying the text of the bookmark in the "bookmark" parameter.

 You may prevent the source document's bookmarks from being imported by
 specifying "import_bookmarks" as False.

 You may also use the "pages" parameter to merge only the specified range of
 pages from the source document into the output document.

There’s also an append method which is identical to the merge command except that it assumes you want to append all the pages onto the end of the PDF. For completeness, here’s an example script:

import PyPDF2

path = open('path/to/hello.pdf', 'rb')
path2 = open('path/to/another.pdf', 'rb')

merger = PyPDF2.PdfFileMerger()

merger.append(fileobj=path2)
merger.append(fileobj=path)
merger.write(open("test_out2.pdf", 'wb'))

That was pretty painless and very nice too!

Wrapping Up

I think I’ve found a good alternative for PDF hacking. I can combine and split PDFs with PyPDF2 easier than I could the original pyPdf. I am also hopeful that PyPDF will stick around since it has a sponsor paying people to work on it. According to the reddit thread, there may be a chance that the original pyPdf may be revived and the two projects may end up working together. Regardless of what happens, I’m just happy that it’s back under development again and will hopefully stay that way for a while. Let me know your thoughts on the topic too.

Further Reading

	PyPDF2 source repository on github
	The PyPDF2 website, also on github
	The two reddit threads I saw about PyPDF2: thread one and thread two
	Manipulating PDFs with Python and pyPdf

		
		
			

	

	
	 Post navigation
	 ← Previous Post
Next Post →

	 		
	
	
				
				16 thoughts on “PyPDF2: The New Fork of pyPdf”			

		

			

					
					
						

								Makarov Andrey
November 6, 2012 at 4:45 pm
								
								
							

							
								I want to create a tool which could merge pdfs, sort, delete and rotate pages. I think pyPdf (or PyPdf2) is quite good for this task, though i also need some tool to render page previews.

It is very important to place page numbers in the final document. How can i achieve this? A-PDF Number Pro and Foxit Phantom are cool but commercial.

								
																	

															
							
					

				
	

					
					
						

								Brian
May 23, 2013 at 5:11 am
								
								
							

							
								Has anyone noticed that PyPDF2 is broken? The above merge and append code does not work using the latest master from github. It throws a ‘NameError: global name ‘file’ is not defined’. A great pity IMHO as this library was v. useful.

								
																	

															
							
					

				
	

					
					
						

								Marc B. Hankin
June 7, 2013 at 3:25 pm
								
								
							

							
								Does anyone know if it’s possible to bates stamp pdf files using PyPDF2?

								
																	

															
							
					

				
	

					
					
						

								Gregala
August 18, 2013 at 6:00 am
								
								
							

							
								Hello!

Thank you for this article. I tried your examples and those given with PyPDF2. Unfortunatley, I have the following error:

(“Unable to find ‘endstream’ marker after stream at byte %s.” % utils.hexStr(stream.tell()))

PyPDF2.utils.PdfReadError: Unable to find ‘endstream’ marker after stream at byte 0xa36b5.

This error appears when this line is executed :

output.write(outputStream)

The previous ones don’t give any error.

Do you have an idea?

Thank you for your help!!!

								
																	

															
							
					

				
	

					
					
						

								jgmitzen
August 23, 2013 at 11:44 pm
								
								
							

							
								That’s the same as broken IMHO, like new software that only runs on Windows 98.

								
																	

															
							
					

				
	

					
					
						

								MayakoLyyn
August 24, 2013 at 8:19 am
								
								
							

							
								I agree but it’s still functional on Py2.x (I think), it just needs some adjustments to be functionnal in Py3k.

								
																	

															
							
					

				
	

					
					
						

								Noah Huntington
February 28, 2014 at 4:16 pm
								
								
							

							
								How do I install pyPDF2?

								
																	

															
							
					

				
	

					
					
						

								Mike Driscoll
February 28, 2014 at 4:34 pm
								
								
							

							
								Download the source from github. Decompress it. Then open a terminal and run python /path/to/pypdf_folder/setup.py install

								
																	

															
							
					

				
	

					
					
						

								eureka
March 18, 2014 at 6:28 am
								
								
							

							
								index out of range: 1 (at line 39 in utils.py of PyPDF2 v1.15)

when i try this code

import clr

clr.AddReference(‘System.Drawing’)

clr.AddReference(‘System.Windows.Forms’)

from System.Drawing import *

from System.Windows.Forms import *

from PyPDF2 import PdfFileReader

class MyForm(Form):

 def __init__(self):

 # Create child controls and initialize form

 self.Text = “Test Project”

 self.Size = Size(600, 500)

path = “F:/Download/RealPython.pdf”

 f = open(path)

 inputpdf = PdfFileReader(open(path, “rb”))

 display = inputpdf.getPage(8).extractText()

 display.mediaBox.upperRight = (

 display.mediaBox.getUpperRight_x() / 2,

 display.mediaBox.getUpperRight_y() / 2

)

Application.EnableVisualStyles()

Application.SetCompatibleTextRenderingDefault(False)

form = MyForm() Application.Run(form)

								
																	

															
							
					

				
	

					
					
						

								Mike Driscoll
March 18, 2014 at 8:19 am
								
								
							

							
								Are you trying to use PyPDF2 with IronPython? I haven’t tried that myself. You should ask the PyPDF team and possibly the IronPython mailing group for help.

								
																	

															
							
					

				
	

					
					
						

								Matt
March 18, 2014 at 4:22 pm
								
								
							

							
								Several libraries haven’t been made compatible with Py 3.x, it takes more work the larger the library.

Anyway, PyPDF2 is fully compatible with Py 3.x now (at least 3.2 and 3.3) if that cheers anyone up.

								
																	

															
							
					

				
	
					Pingback: Python PDF 2: Writing an Manipulating a PDF with PyPDF2 and ReportLab | Wired Andy Blog

				
	

					
					
						

								bruno
November 16, 2014 at 7:55 am
								
								
							

							
								Hello,

I read many pdf’s texts. I don’t do annotations popup but I only

highlight text in yellow. I wanted to extract with PyPdf2 this highlighted text to do some indexation with Whoosh for

my studies.

I know with pyPdf2 extract with the PDf ‘ s key “/Annot” and PDF ‘ s “/Subj” the “/Rect” that gives to me the coordonates of my highlighted text. But I don’t know with pyPdf2 to extract the text from this Rect : extractText() or getContents() does not work with coordonates like extractText(x,y,z,w).

Somebody can give me some way to resolve my little problem ?

Thanks for your patience,

Bruno

								
																	

															
							
					

				
	

					
					
						

								william
March 18, 2015 at 9:30 pm
								
								
							

							
								How to change the content of a pdf with pypdf2?

								
																	

															
							
					

				
	

					
					
						

								Mike Driscoll
August 4, 2016 at 11:39 am
								
								
							

							
								“pip install pypdf2” works as well

								
																	

															
							
					

				
	
					Pingback: PyPdf: How to Write a PDF to Memory - The Mouse Vs. The Python

				

		
	
			Comments are closed.

	
	
	

			
			
		
	

	
	
		
		
	
		Search for:
		
			
			
	

Teach Me Python

Python Courses, Videos, Books and more. Start Learning today!
The Python Show Podcast

Listen at The Python Show or YouTube or Apple Podcasts
The Python Quiz Book

Purchase at Gumroad or Leanpub or Amazon
Automating Excel with Python

Purchase at Gumroad or Leanpub or Amazon
Python 101

Purchase at Gumroad or Leanpub or Amazon
Pillow: Image Processing with Python

Purchase at Gumroad or Leanpub or Amazon
Creating GUI Applications with wxPython
			

Purchase at Gumroad or Leanpub or Amazon

		Pick a Category
Pick a CategorySelect Category
advanced
beginner
Books
Cross-Platform
 Web Framework
Debugging
Education
GUI Toolkits
Image Editing
intermediate
Linux
Packaging
pandas
PyCon
PyDevOfTheWeek
Pyowa
Python
 Advocacy
 Python 3
Python GUI Toolkits
PyWin32
ReportLab
Screencast
SqlAlchemy
System Administration
Testing
TurboGears
Video
Web
Windows
wxPython

Archives
		Archives
		Select Month
 February 2024 (4)
 December 2023 (1)
 November 2023 (10)
 October 2023 (5)
 September 2023 (6)
 August 2023 (6)
 July 2023 (6)
 June 2023 (9)
 May 2023 (6)
 April 2023 (8)
 March 2023 (10)
 February 2023 (8)
 January 2023 (7)
 December 2022 (6)
 November 2022 (6)
 October 2022 (6)
 September 2022 (4)
 August 2022 (7)
 July 2022 (13)
 June 2022 (16)
 May 2022 (12)
 April 2022 (9)
 March 2022 (6)
 February 2022 (6)
 January 2022 (6)
 December 2021 (5)
 November 2021 (7)
 October 2021 (6)
 September 2021 (30)
 August 2021 (7)
 July 2021 (11)
 June 2021 (9)
 May 2021 (10)
 April 2021 (7)
 March 2021 (8)
 February 2021 (11)
 January 2021 (13)
 December 2020 (12)
 November 2020 (10)
 October 2020 (5)
 September 2020 (18)
 August 2020 (10)
 July 2020 (14)
 June 2020 (14)
 May 2020 (7)
 April 2020 (9)
 March 2020 (11)
 February 2020 (10)
 January 2020 (7)
 December 2019 (7)
 November 2019 (5)
 October 2019 (8)
 September 2019 (9)
 August 2019 (7)
 July 2019 (8)
 June 2019 (8)
 May 2019 (8)
 April 2019 (11)
 March 2019 (9)
 February 2019 (11)
 January 2019 (13)
 December 2018 (10)
 November 2018 (11)
 October 2018 (19)
 September 2018 (11)
 August 2018 (14)
 July 2018 (15)
 June 2018 (11)
 May 2018 (12)
 April 2018 (10)
 March 2018 (10)
 February 2018 (11)
 January 2018 (9)
 December 2017 (10)
 November 2017 (6)
 October 2017 (15)
 September 2017 (8)
 August 2017 (7)
 July 2017 (3)
 June 2017 (10)
 May 2017 (10)
 April 2017 (7)
 March 2017 (12)
 February 2017 (11)
 January 2017 (11)
 December 2016 (6)
 November 2016 (8)
 October 2016 (10)
 September 2016 (10)
 August 2016 (11)
 July 2016 (13)
 June 2016 (12)
 May 2016 (12)
 April 2016 (8)
 March 2016 (14)
 February 2016 (15)
 January 2016 (8)
 December 2015 (6)
 November 2015 (6)
 October 2015 (9)
 September 2015 (5)
 August 2015 (8)
 July 2015 (10)
 June 2015 (9)
 May 2015 (6)
 April 2015 (8)
 March 2015 (9)
 February 2015 (8)
 January 2015 (7)
 December 2014 (9)
 November 2014 (8)
 October 2014 (9)
 September 2014 (4)
 August 2014 (4)
 July 2014 (5)
 June 2014 (8)
 May 2014 (4)
 April 2014 (4)
 March 2014 (20)
 February 2014 (10)
 January 2014 (16)
 December 2013 (7)
 November 2013 (10)
 October 2013 (7)
 September 2013 (3)
 August 2013 (5)
 July 2013 (14)
 June 2013 (2)
 April 2013 (9)
 March 2013 (3)
 February 2013 (4)
 January 2013 (3)
 October 2012 (2)
 September 2012 (1)
 August 2012 (11)
 July 2012 (24)
 June 2012 (16)
 May 2012 (14)
 April 2012 (1)
 March 2012 (5)
 February 2012 (1)
 January 2012 (2)
 December 2011 (8)
 November 2011 (8)
 October 2011 (2)
 September 2011 (1)
 August 2011 (3)
 July 2011 (4)
 June 2011 (2)
 April 2011 (2)
 March 2011 (13)
 February 2011 (7)
 January 2011 (14)
 December 2010 (10)
 November 2010 (3)
 October 2010 (11)
 September 2010 (10)
 August 2010 (7)
 July 2010 (7)
 June 2010 (7)
 May 2010 (9)
 April 2010 (6)
 March 2010 (10)
 February 2010 (23)
 January 2010 (6)
 December 2009 (4)
 November 2009 (1)
 October 2009 (1)
 September 2009 (1)
 August 2009 (3)
 July 2009 (1)
 June 2009 (2)
 May 2009 (1)
 April 2009 (1)
 March 2009 (14)
 February 2009 (2)
 January 2009 (3)
 September 2008 (2)
 August 2008 (3)
 July 2008 (1)
 June 2008 (2)
 May 2008 (9)
 April 2008 (4)
 March 2008 (7)

			
Links

		@driscollis
	Buy me a Coffee
	MouseVsPython on Twitter
	MouseVsPython Youtube Channel
	Teach Me Python

	

	

	

		

			
			

	
		
			
									
						Copyright © 2024 Mouse Vs Python | Powered by Pythonlibrary					

				
				
			

		

	

			
		
			

			
				