


		Skip to content


			
			

	
				

			
				
		
			
							

		


		
				

			
					
			
				Main Menu
											
		

			
			
		

				Home
	About
	BooksMenu Toggle
	Creating GUI Applications with wxPython
	Jupyter Notebook 101
	ReportLab: PDF Processing with Python
	Python 201: Intermediate Python
	wxPython Recipes
	wxPython Cookbook
	Python Interviews: Discussions with Python Experts



	Contact the Author
	Follow the Blog
	
						
		
	
		Search for:
		
			
	

			
				
					Search
									
			

		

					




			

		

			
 

 
		
			
		
		

	

		
					
				



	
	


	
	
		

			
			Splitting and Merging PDFs with Python
			
				1 Comment			

			 / Python / By 			
				
				Mike			
			
		

		 /  April 11, 2018  / PyPDF, Python, Python PDF Series

			
		

	
	
	

		
		The PyPDF2 package allows you to do a lot of useful operations on existing PDFs. In this article, we will learn how to split a single PDF into multiple smaller ones. We will also learn how to take a series of PDFs and join them back together into a single PDF.



Getting Started

PyPDF2 doesn’t come as a part of the Python Standard Library, so you will need to install it yourself. The preferred way to do so is to use pip.


pip install pypdf2


Now that we have PyPDF2 installed, let’s learn how to split and merge PDFs!



Splitting PDFs

The PyPDF2 package gives you the ability to split up a single PDF into multiple ones. You just need to tell it how many pages you want. For this example, we will download a W9 form from the IRS and loop over all six of its pages. We will split off each page and turn it into its own standalone PDF.

Let’s find out how:


# pdf_splitter.py

import os
from PyPDF2 import PdfFileReader, PdfFileWriter


def pdf_splitter(path):
    fname = os.path.splitext(os.path.basename(path))[0]

    pdf = PdfFileReader(path)
    for page in range(pdf.getNumPages()):
        pdf_writer = PdfFileWriter()
        pdf_writer.addPage(pdf.getPage(page))

        output_filename = '{}_page_{}.pdf'.format(
            fname, page+1)

        with open(output_filename, 'wb') as out:
            pdf_writer.write(out)

        print('Created: {}'.format(output_filename))

if __name__ == '__main__':
    path = 'w9.pdf'
    pdf_splitter(path)




For this example, we need to import both the PdfFileReader and the PdfFileWriter. Then we create a fun little function called pdf_splitter. It accepts the path of the input PDF. The first line of this function will grab the name of the input file, minus the extension. Next we open the PDF up and create a reader object. Then we loop over all the pages using the reader object’s getNumPages method.

Inside of the for loop, we create an instance of PdfFileWriter. We then add a page to our writer object using its addPage method. This method accepts a page object, so to get the page object, we call the reader object’s getPage method. Now we had added one page to our writer object. The next step is to create a unique file name which we do by using the original file name plus the word “page” plus the page number + 1. We add the one because PyPDF2’s page numbers are zero-based, so page 0 is actually page 1.

Finally we open the new file name in write-binary mode and use the PDF writer object’s write method to write the object’s contents to disk.



Merging Multiple PDFs Together

Now that we have a bunch of PDFs, let’s learn how we might take them and merge them back together. One useful use case for doing this is for businesses to merge their dailies into a single PDF. I have needed to merge PDFs for work and for fun. One project that sticks out in my mind is scanning documents in. Depending on the scanner you have, you might end up scanning a document into multiple PDFs, so being able to join them together again can be wonderful.

When the original PyPdf came out, the only way to get it to merge multiple PDFs together was like this:


# pdf_merger.py

import glob
from PyPDF2 import PdfFileWriter, PdfFileReader

def merger(output_path, input_paths):
    pdf_writer = PdfFileWriter()

    for path in input_paths:
        pdf_reader = PdfFileReader(path)
        for page in range(pdf_reader.getNumPages()):
            pdf_writer.addPage(pdf_reader.getPage(page))

    with open(output_path, 'wb') as fh:
        pdf_writer.write(fh)


if __name__ == '__main__':
    paths = glob.glob('w9_*.pdf')
    paths.sort()
    merger('pdf_merger.pdf', paths)


Here we create a PdfFileWriter object and several PdfFileReader objects. For each PDF path, we create a PdfFileReader object and then loop over its pages, adding each and every page to our writer object. Then we write out the writer object’s contents to disk.

PyPDF2 made this a bit simpler by creating a PdfFileMerger object:


# pdf_merger2.py

import glob
from PyPDF2 import PdfFileMerger

def merger(output_path, input_paths):
    pdf_merger = PdfFileMerger()
    file_handles = []
    
    for path in input_paths:
        pdf_merger.append(path)
        
    with open(output_path, 'wb') as fileobj:
        pdf_merger.write(fileobj)
        
if __name__ == '__main__':
    paths = glob.glob('w9_*.pdf')
    paths.sort()
    merger('pdf_merger2.pdf', paths)


Here we just need to create the PdfFileMerger object and then loop through the PDF paths, appending them to our merging object. PyPDF2 will automatically append the entire document so you don’t need to loop through all the pages of each document yourself. Then we just write it out to disk.

The PdfFileMerger class also has a merge method that you can use. Its code definition looks like this:


def merge(self, position, fileobj, bookmark=None, pages=None, import_bookmarks=True):
        """
        Merges the pages from the given file into the output file at the
        specified page number.

        :param int position: The *page number* to insert this file. File will
            be inserted after the given number.

        :param fileobj: A File Object or an object that supports the standard read
            and seek methods similar to a File Object. Could also be a
            string representing a path to a PDF file.

        :param str bookmark: Optionally, you may specify a bookmark to be applied at
            the beginning of the included file by supplying the text of the bookmark.

        :param pages: can be a :ref:`Page Range ` or a ``(start, stop[, step])`` tuple
            to merge only the specified range of pages from the source
            document into the output document.

        :param bool import_bookmarks: You may prevent the source document's bookmarks
            from being imported by specifying this as ``False``.
        """


Basically the merge method allows you to tell PyPDF where to merge a page by page number. So if you have created a merging object with 3 pages in it, you can tell the merging object to merge the next document in at a specific position. This allows the developer to do some pretty complex merging operations. Give it a try and see what you can do!



Wrapping Up

PyPDF2 is a powerful and useful package. I have been using it off and on for years to work on various home and work projects. If you need to manipulate existing PDFs, then this package might be right up your alley!



Related Reading

	A Simple Step-by-Step Reportlab Tutorial
	 ReportLab 101: The textobject
	ReportLab – How to add Charts and Graphs
	Extracting PDF Metadata and Text with Python



		
		
			




	



	        
	                Post navigation
	                ← Previous Post
Next Post →


	        		
	
	
				
				1 thought on “Splitting and Merging PDFs with Python”			

		

			
					Pingback: Newsy python 2018-04-15 – DevNation 

				



		
	
			Comments are closed.

	
	
	



			
			
		
	



	
	
		
		
	
		Search for:
		
			
			
	

Teach Me Python




Python Courses, Videos, Books and more. Start Learning today!
The Python Show Podcast




Listen at The Python Show or YouTube or Apple Podcasts
The Python Quiz Book




Purchase at Gumroad or Leanpub or Amazon
Automating Excel with Python




Purchase at Gumroad or Leanpub or Amazon
Python 101




Purchase at Gumroad or Leanpub or Amazon
Pillow: Image Processing with Python




Purchase at Gumroad or Leanpub or Amazon
Creating GUI Applications with wxPython
			

Purchase at Gumroad or Leanpub or Amazon



		Pick a Category
Pick a CategorySelect Category
advanced
beginner
Books
Cross-Platform
   Web Framework
Debugging
Education
GUI Toolkits
Image Editing
intermediate
Linux
Packaging
pandas
PyCon
PyDevOfTheWeek
Pyowa
Python
   Advocacy
   Python 3
Python GUI Toolkits
PyWin32
ReportLab
Screencast
SqlAlchemy
System Administration
Testing
TurboGears
Video
Web
Windows
wxPython




Archives
		Archives
		Select Month
 February 2024  (4)
 December 2023  (1)
 November 2023  (10)
 October 2023  (5)
 September 2023  (6)
 August 2023  (6)
 July 2023  (6)
 June 2023  (9)
 May 2023  (6)
 April 2023  (8)
 March 2023  (10)
 February 2023  (8)
 January 2023  (7)
 December 2022  (6)
 November 2022  (6)
 October 2022  (6)
 September 2022  (4)
 August 2022  (7)
 July 2022  (13)
 June 2022  (16)
 May 2022  (12)
 April 2022  (9)
 March 2022  (6)
 February 2022  (6)
 January 2022  (6)
 December 2021  (5)
 November 2021  (7)
 October 2021  (6)
 September 2021  (30)
 August 2021  (7)
 July 2021  (11)
 June 2021  (9)
 May 2021  (10)
 April 2021  (7)
 March 2021  (8)
 February 2021  (11)
 January 2021  (13)
 December 2020  (12)
 November 2020  (10)
 October 2020  (5)
 September 2020  (18)
 August 2020  (10)
 July 2020  (14)
 June 2020  (14)
 May 2020  (7)
 April 2020  (9)
 March 2020  (11)
 February 2020  (10)
 January 2020  (7)
 December 2019  (7)
 November 2019  (5)
 October 2019  (8)
 September 2019  (9)
 August 2019  (7)
 July 2019  (8)
 June 2019  (8)
 May 2019  (8)
 April 2019  (11)
 March 2019  (9)
 February 2019  (11)
 January 2019  (13)
 December 2018  (10)
 November 2018  (11)
 October 2018  (19)
 September 2018  (11)
 August 2018  (14)
 July 2018  (15)
 June 2018  (11)
 May 2018  (12)
 April 2018  (10)
 March 2018  (10)
 February 2018  (11)
 January 2018  (9)
 December 2017  (10)
 November 2017  (6)
 October 2017  (15)
 September 2017  (8)
 August 2017  (7)
 July 2017  (3)
 June 2017  (10)
 May 2017  (10)
 April 2017  (7)
 March 2017  (12)
 February 2017  (11)
 January 2017  (11)
 December 2016  (6)
 November 2016  (8)
 October 2016  (10)
 September 2016  (10)
 August 2016  (11)
 July 2016  (13)
 June 2016  (12)
 May 2016  (12)
 April 2016  (8)
 March 2016  (14)
 February 2016  (15)
 January 2016  (8)
 December 2015  (6)
 November 2015  (6)
 October 2015  (9)
 September 2015  (5)
 August 2015  (8)
 July 2015  (10)
 June 2015  (9)
 May 2015  (6)
 April 2015  (8)
 March 2015  (9)
 February 2015  (8)
 January 2015  (7)
 December 2014  (9)
 November 2014  (8)
 October 2014  (9)
 September 2014  (4)
 August 2014  (4)
 July 2014  (5)
 June 2014  (8)
 May 2014  (4)
 April 2014  (4)
 March 2014  (20)
 February 2014  (10)
 January 2014  (16)
 December 2013  (7)
 November 2013  (10)
 October 2013  (7)
 September 2013  (3)
 August 2013  (5)
 July 2013  (14)
 June 2013  (2)
 April 2013  (9)
 March 2013  (3)
 February 2013  (4)
 January 2013  (3)
 October 2012  (2)
 September 2012  (1)
 August 2012  (11)
 July 2012  (24)
 June 2012  (16)
 May 2012  (14)
 April 2012  (1)
 March 2012  (5)
 February 2012  (1)
 January 2012  (2)
 December 2011  (8)
 November 2011  (8)
 October 2011  (2)
 September 2011  (1)
 August 2011  (3)
 July 2011  (4)
 June 2011  (2)
 April 2011  (2)
 March 2011  (13)
 February 2011  (7)
 January 2011  (14)
 December 2010  (10)
 November 2010  (3)
 October 2010  (11)
 September 2010  (10)
 August 2010  (7)
 July 2010  (7)
 June 2010  (7)
 May 2010  (9)
 April 2010  (6)
 March 2010  (10)
 February 2010  (23)
 January 2010  (6)
 December 2009  (4)
 November 2009  (1)
 October 2009  (1)
 September 2009  (1)
 August 2009  (3)
 July 2009  (1)
 June 2009  (2)
 May 2009  (1)
 April 2009  (1)
 March 2009  (14)
 February 2009  (2)
 January 2009  (3)
 September 2008  (2)
 August 2008  (3)
 July 2008  (1)
 June 2008  (2)
 May 2008  (9)
 April 2008  (4)
 March 2008  (7)



			
Links

		@driscollis
	Buy me a Coffee
	MouseVsPython on Twitter
	MouseVsPython Youtube Channel
	Teach Me Python





	





	
 
	


		

			
			

	
		
			
									
						Copyright © 2024 Mouse Vs Python | Powered by Pythonlibrary					

				
				
			

		

	




			
		
			






			
				